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Backlund transformations for the (nn)pumped 
Maxwell-Bloch system and the fifth Painlev6 equation 

W K Schief 
School of M h m t i a ,  University of New South Wales, Kensington, NSW 2033, Australia 

Received 8 July 1993 

Abstract. A Blcklund transformation for the (un)pumped Maxwell-Bloch system goveming 
phenomena in nonlinear optics is derived. The approach is based on the use of consfant 
coefficient ideals (cc ideas). Since the Maxwell-Bloch system in a cemh one-dimensional 
reduction is connected to the fifth Painlev6 equation via a wntact transformation, chains of 
solutions for the latter equation are obtained. As illustration, some rational solutions are explicitly 
given. 

1. Introauction 

During the past twenty years the study of nonlinear integrable systems has become more 
and more sophisticated. Against this background new interest has been shown in the 
construction of physically relevant solutions of the (un)pumped Maxwell-Bloch system 
of nonlinear optics (see [I] and references therein). In the absence of pumping it describes 
sharpline self-induced transparency and is equivalent to a system goveming stimulated 
Raman scattering in the transient l i t  [2]. In this case the Maxwell-Bloch system can be 
regarded as compatibility condition for an ordinary Lax pair [3]. 

The pumped Maxwell-Bloch system, however, admits a non-isospectrd linear problem 
(Lax pair) which is amenable to a generalized version of the inverse scattering method. 
In particular, soliton solutions have been obtained using this technique [4]. Here, it is 
shown that the (un)pumped Maxwell-Bloch system can be represented by a ‘cc ideal‘ (a 
closed set of differential two-forms with constant coefficients) or ‘invariant differential 
system’ as introduced by Harrison [SI and Estabrook 161, respectively. In subsequent 
papers Hoenselaers [7, 81 has taken up this notion and derived cc ideals for various 
integrable equations including the classical sinffiordon equation, (modified) Korteweg- 
de Vries equation and nonlinear Schrodinger equation. 

CC ideals may be used to generate Backlund transformations for the underlying nonlinear 
equations as presented in [9]. It turns out that an extended approach is applicable to the ‘non- 
isospectral’ CC ideal of the Maxwell-Bloch system. Moreover, this Bacicktund transformation 
is compatible with a certain similarity reduction of the Maxwell-Bloch system leading to an 
ordinary differential equation of second order which is related to the fifth Painlev6 equation 
via a contact transformation [IO]. The Backhmd transformation can be iterated and therefore 
generates hierarchies of solutions for one of the Painlev6 equations which play ul important 
role in the singularity manifold analysis [l]. 
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548 W K Schief 

2. The cc ideal 

In two papers on prolongation structures for nonlinear partial differential equations [7, 81 
Hoenselaers has demonstrated extensively how to derive differential equations from constant 
coefficient ideals (cc ideals) or invariant differential systems originally expounded by 
Harrison [51 and Estabrook @I. This procedure may be regarded as the reverse of the 
Wahlquist-Estabrook prolongation technique 111, 121 and reads in the present context as 
follows: 

The prolongation algebra in question is the semi-duect sum of the infinibdimensional 
loop algebra of sI(2, R) (essentially the Kac-Moody algebra AY) [13]) and the Viasoro 
algebra, viz 

sl(2, R) @ R(h, A-') f3 Vrasom. (1) 
It obeys the commutator relations 

[xi", x;] = [xi, xj]n+m ID", x?] = mX:+" [D", D'"] = (m -n)D"+" (2) 
where the simple Lie algebra sZ(2, R) is defined via the relations 

[xi ,  xz] = -2x2 [xi, &] = 2x3 [ X z ,  X,] = X I .  (3) 
In order to construct a cc ideal for the (un)pumped Maxwell-Bloch system we shall 

focus on the basic generators XF', X;, X!, X:, Xi, X i  and 0'. Accordingly (cf, e.g. [SI 
on how this formalism works), we can introduce one-forms 

ell dual to X;' 

f ;  dual to Xi 

6: dual to Xi  dual to X! 

c; dual to Xi 5; dual to Xi 

112 dual to D2 

which give rise to a closed ideal of differential two-forms generatedt by the differential ' p  
system' 

dvz = 0 

de?l = 0 a& = -211 t? at; =Ti1 6; (4) 

dei = -72 ('1 i- <: c; 4- c: de; = -2e; t: de; = 2c; 5; 
and the algebraic 'U system' 

112 t; = 112 e; = 112 t; = 0 

e, t: = L t :  = t; 5: = 0 
$ . i f Z - p  3 -  2 3 
1 1 - 1 ti - h  ti =o.  

(5) 

The fact that the structure constants of the Lie algebra (1) satisfy the Jacobi identities 
guarantees that the ( p ,  U )  system is closed under exterior differentiation. If we were dealing 
with the complete set of generators of a finite-dimensional Lie algebra the U system would 
not be present and the p system just constitute the Maurer-Cartan structure forms of that 
algebra. 

t Hereafter we shall commit the usual impropriety in referring to the system (4) as 'closed ideal', Funhermore, 
the wedge W e e n  differential forms will be omitted. 
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As an additional constraint we demand that the one-forms ~2~ e!,, e; be real and e:, e: 
and E : ,  -5: form complex conjugate pairs respectively. We note that this condition is 
compatible with the ( p ,  U )  system (4), (5). Having this in mind we can now look for exact 
one-forms within the p system to be used as coordinate differentials on the guaranteed 
existing integral manifolds (Cartan's calculus of exterior differential forms [14]). The 
obvious choice is, of course, 

~2 = $?dx e:, = i d t  (6) 

with some constant c. The algebraic U system implies that 

e: e; - e: * tlz 
e,! = 4Ndx = ip*& 9: = -fp& 

e; - e; - e', 
and hence a parametrization of our one-forms may be introduced according to 

(7) 

where the numerical factors have been chosen for convenience and the asterisk denotes 
complex conjugation. 

The final step in the procedure is to insert the one-forms fj and 12  as given by (6) and 
(7) into the remaining equations of the p system (4) which produces the first-order system 

= fE*dt = fEdt  

pt = N E  (84 
E x = P  (8b) 
N t f $ ( p E * + p * E ) = ~ c 2 .  (W 

The above system constitutes the pumped Maxwell-Bloch system descriptive of the 
propagation of radiation pulses in a two level atomic system. The quantities involved 
are the complex envelope E ,  the population N and the polarization p, The pumping of 
atoms between the ground and excited state is characterized by the constant c. 

Interestingly, the (unlpumped Maxwell-Bloch system can be brought into (at least) two 
equivalent forms which provides links to other known integrable equations. Firstly, on 
sening 

E = 2s p =2A1A; N IAi12- IA212 

the unpumped Maxwell-Bloch system (c = 0) transforms into 

A,, = -SA2 A 2  = S A ,  S, = AIA: (9) 

where (A1[2+(A# = 1 has been assumed without loss of generality 121. The above system 
represents the stimulated Raman scattering equations under certain assumptions. (It should 
be emphasized that here, as well as in the case of the Maxwell-Bloch system, x and t are 
in general not the physical variables.) 

Secondly, multiplication of (8c) by N and use of ( 8 4  yields 
2 (Nz + P P " ) ~  = c N 

which suggests parametrizing N and p in terms of trigonometric/exponential functions. In 
fact, putting 

N=acose  p=-asinee'v (10) 



550 W K Schief 

we obtain 

a, = p c o s e .  

The above equations may be termed 'deformed self-induced transparency equations' for 
different reasons. On the one hand, €or c = 0, they describe sharp-line, self-induced 
transparency as mentioned in the introduction. On the other hand, in the limit (p = 0, 
a particular case of the deformed sineGordon system defining hyperbolic surfaces in 
differential geometry (Bianchi surfaces) is obtained [15, 161. Here, the negative Gaussian 
curvature of the surfaces depends only on t. We shall see later that the Backlund 
transformation to be derived is in agreement with the one associated with sdaces  of constant 
negative curvature, i.e. the classical Bkklund transformation for the s indordon  equation. 

3. The prolongation structure 

For the derivation of a Backlund transformation for the Maxwell-Eloch system it is now 
necessary to set up a (linear) problem for the cc ideal (4), (5). To this end let us suppose 
that the Lie algebra (1) is realized as vectorfields living on a manifold labelled by the 
components of some vector-valued variable y, say. In this case the comniutator appearing 
in (2) is the usual Lie bracket (up to the sign) between vectofields with respect to the 
'pseudopotentials' y, viz 

~ Z B - z ~ y B  [Y, zl" = Y,p .B 

51 = -dy + X'!p 8 "  + D z 1 / 2  

(Einstein's summation convention!)?. Then, by construction, the set of oneforms 

(12) 
and 1/2 satisfy the (p.  a) system. This is closed, i.e. d51 = 0 mod 51, iff the one-forms 

condition, in tum, guarantees that the equations 51 = 0 aee integrable [ I l ,  121. 
More specifically, in terms of the standard representation of the Lie algebra (1) 

(X:)"ay = A"(Xj@, a+) (D")"ay = -An+'& 

the set of one-forms (12) spiits into 

51' = -d@ + A"Xj&6 (13) 

(14) 

Here, the pseudopotential vector y consists of the components ( @ I ,  @ 2 ,  A), ( X i @ ,  a+) denotes 
the scalar product beiween those two-dimensional vectors and the matrices Xi constitute 
the standard faithful and tracefree representation of the sZ(2, R) algebra as given by (3), 
namely 

3 51' = -dA - A  7 2 .  

t Note that throughout this paper greek inaices label components of objects, whereas mman indices number the 
objects themselves. 



Biicklund trMsfomtions for the (unJpumped Maxwell-Bfoch system 551 

Furthermore, restriction of C2 to an integral manifold 

Qly=y(x.r) = 0 
and use of the explicit parametrization (6), (7) produces the Frobenius system 

1 0  
-E* 0 0 -1 

together with 

A I -  --ic2A3 2 A , = O .  (18) 
The linear problem (16). (17) is non-isospectral, as pointed out in [IO], since the ‘parameter’ 
A depeads on the coordinate x .  In fact, the first-order system (18) can be integrated, giving 

(1% 

where K is a real integration constant. It is evident that the integrability condition for the 
Frobenius system (16H18) is satisfied modulo the Maxwell-Bloch system (Sa). 

1 
C G F Z  

A =  

4. T h E  BiCkhFld @WilSfOmtiOU 

The following approach is based on the ‘dressing’ method developed by Neugebauer 
and Kramer which provides Backlnnd transformations for nonlinear equations given as 
compatibility condition of (non-)isospectral Lax pairs of the form (16H18). This ‘N- 
soliton ansatz’ had its origin in the study of Emst’s equation of general relativity in 1979 
[17]. Subsequently, it has been applied to Einstein-Maxwell fields in general relativity and 
the AKNS system [lS, 191. A generalization of this method to cc ideals has been discussed 
in [9] the essence of which may be summarized as follows. 

Theorem 1. Let a tracefree 2 x %matrix-valued one-form X ( A )  be polynomial of degree k 
in aconstant A and degree 1 in A-’. Furthermore, let @ be a two-dimensional pseudopotential 
vector and 

NO 

n=o 
P(A) = PEA“ E R2‘ 

be restricted by 

(0 det P N ~  = constant # 0 

(U) W - r M r  = 0 
for arbitrary but distinct constants Ar, r = 
pseudopotential vectors &. 

Then the vector-valued oneform 

Sl = -d@ + X(A)@ 

is form-invariani under 

4 + @’ = P(L)@ 

.... 2N0, and linea iI 
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52 -+ Q' = P(A)52 

X ( A )  + X'(A) = P(A)X(A)P- ' (A)  +dP(A)P-'(A) 

(24) 

(25) 

where the last relation has to be taken modulo 52, = Q~+$,,A=A,. 

In order not to clutter up the formulae with too many symbols we have confined 
ourselves to the relevant case of two-dimensional objects. The condition (20) guarantees 
that the new oneform X'(A) is again tracefree whereas the condition (21) preserves the 
polynomial structure and the degree of X'(A). Hence, XI(&) is understood as limA,k, X'(A). 
It should be shessed that (21) constitutes a linear algebraic system which determines P(A)  
up to one coefficient P,,, say. 

Unfortunately, theorem 1 in the present form is not appropriate for the purposes pursued 
in this paper since A is &eat& as a constant. Consequently, the above theorem provides 
a B&Hund &"formation only for CC ideals based on the loop algebra of sl(2, R ) .  
Nevertheless, the formal structure of the oneform 52' (13) and (22) is the same though A 
therein is a pseudopotential itself. The following modification of theorem 1 takes this fact 
into account. 

Theorem 2. Let a tracefree 2 x 2-matrix-valued one-form X ( A )  be polynomial of degree k 
in a pseudopotential A and degree I in A.-'. Furthermore, let a oneform D(A) be polynomial 
of degree k + 2  in A and 1 in A-' and 

ZNO NO 

r=1 "=O 

P(A) = f (A)Q(A) = f l ( A  - h,)-'"E Q.h" E R2.' 

be restricted by 

(9 det QN" = constant # 0 (26) 

(ii) W r M r  = 0 (27) 

for arbitrary but distinct pseudopotentials A,, r = 1,. . . , ZNO, and linearly independent 
pseudopotential vectors 4,. 

Then the vector-valued one-form 

52' = -d4 + X ( A ) 4  

is form-invariant under 

4 + 4' = P ( A ) 4  

QL + QL' = P(A)QL 

X ( A )  -+ X'(A) = P(A)X(A)P- ' (A)  +dP(A)P- ' (A)  

whereas the oneform 

52" = -dA - D(A) 

remains unchanged. Analogous to theorem 1, (28) has to be taken modulo 52: and 52;. 
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ProoJ To prove theorem 2 it is necessary to show two properties of the transformed one- 
form X'(A). Firstly, since det Q(A) is a polynomial of degree 2No in A and condition (27) 
implies that det Q ( I , )  = 0, we conclude that 

ZNo 
det Q(A) - n(A - A r ) .  

,=I 

Thus, (26) yields 

det PQ) = constant 

and consequently 

Tr X'(A) = Tr [dP(A)P-'(A)] = d[ln det P(A)]  = 0.  

Secondly, it can readily be shown that the first two terms of the right-hand side of 

(29) 
d f  (A) X'(A) = Q(I)X(A)Q-'(A) + dQ(A)Q-'(A) + - f ( I )  

form a (hurent) polynomial in I by following the proof of theorem 1 [9]. The remaining 
term 

is regular at the zeros Ar since D(A) is a (Laurent) polynomial in A. Moreover, on writing 
equation (28) in the form 

X'(QQ@) = Q(A)X(A) + dQ@) + - df (') Q ( I )  (30) f (A) 
it is easily proven that terms proportional to ANo+k+l in (30) cancel out so that X'(A) is 
indeed a polynomial in I of degree k and in I-' of degree 1. 

Now, the one-form QL associated with the Maxwell-Bloch system can be characterized 
uniquely via the properties of 

X(A) = X,A" = A"X& 

as given in (13) 

X(A) is a polynomial of degree k = 1 and 1 = 1, respectively (31) 

with 

X-I does not contain the generators X z  and X, (32) 

x ( - I )  = MX*(A)M-' (33) 

M = ( :  il) 
For the new one-form X'(A) condition (31) is covered by theorem 2. Invariance of the 

remaining conditions (32) and (33) requires restrictions on Qo and the zeros Ar according 
to the following theorem. 
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Theorem 3 (No-fold Backlund transformarion for the Maxwell-Bloch CC ideal). 
form X'(A) = +" as given in theorem 2 satisfies (32) and (33) for 

The one- 

and 

AN,+, = -A, r = 1, . . . , NO 

'$Not' = M'$r. 

Evaluation of (30) leads to 

Xl, = x-1 
4 = QoXaQci + K!i. X-ilQ;' 

x{ = QNoxiQi: + + C ~ Q N ~ - I  Qi:. 

(35) 

The one-forms f: are obtained by sorting with respect to the generators Xi. 
As was pointed out in 19, 191, discrete symmehies of the kind (33) are preserved by 

a suitable choice of the zeros Ar,  namely (35). Fnrthermore, the definition (34) of Qo 
guarantees that the primed version of (32) is satisfied. Thus, we can set 

xi, = X d l ;  Xf-x 0 - i t 0  i' x; = xigf' 
which establishes the Bkklund transiormation for the (p.  r) system (4), (5). 

On use of the paramehization (6) and (7) the Bkklund transformation (NO = 1) of the 
Maxwell-Bloch system may be phrased as follows: Let E, p,  N be a seed solution of the 
Maxwell-Bloch system (Sa). Then a new solution of this system is given by 

I x = x  t ' = t  

where 

and @ I ,  A1 is a solution of the Frohenius system (16H18). 

(1 1) collapses to the sinsGordon equation 
Finally, as mentioned at the end of section 2, the Maxwell-Bloch system in the form 

e,, = sin0 (38) 
in the limit c = 0, E real. In this case, y obeys the equations 

yx = AI sio(y - 0) yt = 0, +A;' sin y 

and the Backlund transformation (37) reads 

e'= -e i 2 y .  

(39) 

(40) 
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Solving (40) for y and inserting into (39) we rediscover the classical Backlund 
transformation 

for the sinffiordon equation (38) [ZO]. 

5. The fifth Painlev6 equation 

'Ibis section is devoted to a similarity reduction of the Maxwell-Bloch system. On using 
suitable similarity variables this will lead to an ordinary differential equation of second 
order which has been shown to be linked to the fifth Painlev6 equation via a contact 
transformation [lo]. 

Following Winternitz [lo], we first solve the Maxwell-Bloch system (8u) for p and N 
so that we obtain a partial differential equation for E only, viz 

Here, E has been assumed to 'be real. Then it is easily seen that the above equation is 
invariant under the Lie-point symmetry [21] 

EEXn - E,,E, + E3Ex = &'E2. 

x = zra, - ta, + EaE.  

(41) 

Consequently, equation (41) can be reduced to an ordinary differential equation by 
introducing similarity variables according to 

Hence, we end up with the third order equation 

Remarkably, the first integral of this equation as given in [lo] may be derived directly 
from the linear problem (16H18). To this end we note that in the vzriables z and s the 
coefficients of the Lax pair (IQ, (17) are independent of s iff the integration constant in 
(19) vanishes, i.e. A = l/c& It then assumes the form 

O F  
-F 0 (43) 

This fact may now be exploited by setting 

@(z, s) = e-es/4 .(Z) 
where E is an arbitmy constant, which transforms (44) into the algebraic system 

Since (4s) constiwm an eigenvalue problem, the corresponding determinant has to vanish 
identically. Thus, the characteristic equation reads 

z 2 ( ~ ~ ~ / ~ - c ~ ) ' + ~ ~ - c ~ ~ ~ = E 2 c 2 .  (46) 
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It can readily be verified that differentiation of (46) produces the third order equation (42) 
provided that F,JF - c' # 0. Finally, the contact transformation 

H - 1 -25HI 
F(z) = i H ( H  - 1 )  

H ( o  = -iFF, +z(F,, - czF) 

z = 2 &  

1 
4 

I' = -z' -iFF, + zF,, 

connects (46) to the Painlev€ equation 

(47) 

Its solution is the fifth Painlevd transcendent P v ( ~ E ' ,  -4, -$c', 0; <). This observation is 
in agreement with the strong link between the Painlevd property, i.e. the absence of movable 
singularities other than poles, and integrable partial differential equations [ l ] .  

How does the Backlund transformation (37) act on the Painlev6 equation (48)? For this 
we remark that the quotient of the two components of the eigenfunction 4 is obtained from 
(45) in a purely algebraic manner, namely 

Furthermore, the corresponding 'spatial' part (43) is satisfied modulo (46). Hence, the 
macklund) transformation for F is given by 

Fz - c'F' F' = F -27, 
z(F,, - cZF) - E F ~  (49) 

In order to get the transformation law for the constant E we insert F' into the primed version 
of (46) and conclude that 

f E' = E + 2 .  (50) 

The final step in the procedure is to apply the contact transformation (47) to the 
transformation (49) which yields 

(51) 
(2<Hf + 1 - H')' - 45HZ(H - 1) - Hz(H - 1)'@ + 1)' 

H[(2<  Hr + E(H - 1)' - 2(H - 1))' - 4<H(H - 1 )  - ( H  - 1 ) ' ( ~  + l)'] H' = 

(thanks to MAPLE'S factorizer). Here, c = 1 has been set without loss of generality. 
The transformation properties of the six Painlev6 equations have been widely studied 

by Russian authors. A unified approach and references can be found in 1221. Gromak 1231 
bas given a transformation between the fifth and the thud Painlevd equation which we 
denote by Tv+nI. Moreover, if P&!, p, y. 6; z )  is a solution of the third Painlev€ 
equation so is -Plu(-cu, -p, y ,  S; z )  (transformation Tu& The composite transformation 
Tm+v o Tni o Tv+m then agrees with the one derived in this paper. 

To round off we illustrate the fact that the transformation (49) (or (51)) may be iterated 
and therefore produces chains of solutions by way of an example. On starting with the seed 
solution 

F = z  & = I  C'I 
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we generate the following hierarchy of rational solutions: 
F1 = Z  

z(3 - 2) 
1+z2 

F3 

z(z6 - 924 - 4522 + 45) 
Fs = z6 + 3z4 + 27z2 + 9 
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