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Bicklund transformations for the (un)pumped
Maxwell-Bloch system and the fifth Painlevé equation

W K Schief
School of Mathematics, University of New South Wales, Kensington, NSW 2032, Australia

Received 8 July 1993

Abstract. A Bicklund transformation for the (un)pumped Maxwell-Bloch system governing
phenomena in nonlinear optics is derived. The approach is based on the wse of constant
coefficient ideals {cC ideals). Since the Maxwell-Bloch system in a certain one-dimensional
reduction is connected to the fifth Painlevé equation via a contact transformation, chains of
solutions for the Iatter equation are obtained. As illustration, some rational solutions are explicitly
glVCIl.

1. Introduction

During the past twenty years the study of nonlinear integrable systems has become more
and more sophisticated. Against this background new interest has been shown in the
construction of physically relevant solutions of the (un)pumped Maxwell-Bloch system
of nonlinear optics (see [1] and references therein). In the absence of pumping it describes
sharpline self-induced transparency and is equivalent to a system governing stimulated
Raman scattering in the transient limit [2]. In this case the Maxwell-Bloch system can be
regarded as compatibility condition for an ordinary Lax pair [3].

The pumped Maxwell-Bloch system, however, admits a non-isospectral linear problem
(Lax pair) which is amenable to a generalized version of the inverse scattering method.
In particular, soliton solutions have been obtained using this techmique [4]. Here, it is
shown that the (un)pumped Maxwell-Bloch system can be represented by a ‘cC ideal’ (a
closed set of differential two-forms with constant coefficients) or ‘invariant differential
system’ as introduced by Harrison [5] and Estabrook [6], respectively. In subsequent
papers Hoenselaers [7, 8] has taken up this notion and derived CC ideals for varicus
integrable equations including the classical sine—Gordon equation, (modified) Korteweg—
de Vries equation and nonlinear Schrédinger equation.

CC ideals may be vsed to generate Bicklund transformations for the underlying nonlinear
equations as presented in [9]. It turns out that an extended approach is applicable to the ‘non-
isospectral’ cc ideal of the Maxwell-Bloch system. Moreover, this Bécklund transformation
is compatible with a certain similarity reduction of the Maxwell-Bloch system leading to an
ordinary differential equation of second order which is related to the fifth Painlevé equation
via a contact transformation [10]. The Bécklund transformation can be iterated and therefore
generates hierarchies of solutions for one of the Painlevé equations which play an important

role in the singularity manifold analysis [1].
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2. The CC ideal

In two papers on prolongation structures for nonlinear partial differential equations (7, 8]
Hoenselaers has demonstrated extensively how to derive differential equations from constant
coefficient ideals (CC ideals) or invariant differential systems originally expounded by
Harrison [5] and Estabrook [6]. This procedure may be regarded as the reverse of the
Wahlquist-Estabrook prolongation technique [11, 12] and reads in the present context as
follows:

The prolongation algebra in question is the semi-direct sum of the infinite-dimensional
loop algebra of si(2, R) (essentially the Kac-Moody algebra AE” [131) and the Virasoro
algebra, viz

si(2, R} ® R(\, A1) @ Virasoro. (1)
It obeys the commutator relations
(X7, X1 =X, X" (D" X[l=mXx;™  [D",D"l=@m-mD™™" (2
where the simple Lie algebra sI(2, R) is defined via the relations

(X1, Xo] = —-2X> [X1, X3] = 2X;5 [X2, X3] = X (3)

In order to construct a CC ideal for the (un)pumped Maxwell-Bloch system we shall
focus on the basic generators X', X3, X3, X1, X}, X} and D2, Accordingly (cf, e.g. [8]
on how this formalism works), we can introduce one-forms

gL, dual to X;? &2 dual to X3 £ dual to X3
g] dual to X} g% dual to X} £? dual to X}

1o dual to D?

which give rise to a closed ideal of differential two-forms generatedf by the differential ‘p
system’

dﬂz =0

dgly =0  dig=-26L,8 @ di =2l 5 @

Al =-mE +EEHEE W =-28 =245
and the algebraic ‘o system’

mE =mE=m§=0

sLhig=sLg=88=0 ®)

s e =48 =6g=0.
The fact that the structure constants of the Lie algebra (1) satisfy the Jacobi identities
guarantees that the (p, o) system is closed under exterior differentiation. If we were dealing
with the complete set of generators of a finite-dimensional Lie algebra the o system would

not be present and the p system just constitute the Maurer—Cartan structure forms of that
algebra.

t Hereafter we shall commit the usual impropriety in referring to the system (4) as ‘closed ideal’. Furthermore,
the wedge between differential forms will be omitted.
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As an additional constraint we demand that the one-forms 2, £1,, &} be real and &2, &5
and £Z, —~& form complex conjugate pairs respectively. We note that this condition is
compatible with the (o, ) system (4), (5). Having this in mind we can now look for exact
one-forms within the g system to be used as coordinate differentials on the guaranteed
existing integral manifolds (Cartan’s calculus of exterior differential forms [14]). The
obvious choice is, of course,

mp=3c*dx gl =21dt (6)
with some constant c. The algebraic ¢ system implies that

H~d~Eem Gg~E
and hence 2 parametrization of our one-forms may be introduced according to

g=inde  B=lpdc & =-lpdx

£ =3E*dt & =1Edt

@

where the numerical factors have been chosen for convenience and the asterisk denotes
complex conjugation.

The final step in the procedure is to insert the one-forms £ and #; as given by (6) and
(7) into the remaining equations of the p system (4) which produces the first-order system

pr=NE , (8a)
E,.=p ' (8b)
N, + 3(pE* + p*E) = 1c2. (8c)

The above system constitutes the pumped Maxwell-Bloch system descriptive of the
propagation of radiation pulses in a two level atomic system. The quantities involved
are the complex envelope E, the population N and the polarization p. The pumping of
atoms between the ground and excited state is characterized by the constant ¢,
Interestingly, the {(un)pumped Maxwell-Bloch system can be brought into (at least) two

equivalent forms which provides links to other known integrable equations. Firstly, on
setting .

E=125 0 =24,45 N =A1]* - 4P
the unpumped Maxwell-Bloch system (¢ = () transforms into

Ay =—SA; Ay = §* A, Sy = A1A} 9

where |A1[2+]A43[% = 1 has been assumed without loss of generality [2]. The above system
represents the stimulated Raman scattering equations under certain assumnptions. (It should
be emphasized that here, as well as in the case of the Maxwell-Bloch system, x and ¢ are
in general not the physical variables.)

Secondly, multiplication of (8¢) by N and use of (8a) yields

(V% + po™) = N

which suggests parametrizing N and p in terms of trigonometric/exponential functions. In
fact, putting

N =acosd o = —asinfe (10)
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we obtain

inéd
Orx + %cz (ilz—) — @@ tan@ = asind
X

iné
(@1 tan ), + (e, + %czg_z_) ¢:=0 a

a, = ictcosd.

The above equations may be termed ‘deformed self-induced transparency equations’ for
different reasons. On the one hand, for ¢ = 0, they describe sharp-line, self-induced
transparency as mentioned in the introduction. On the other hand, in the limit ¢ = 0,
a particular case of the deformed sine-Gordon system defining hyperbolic surfaces in
differential geometry (Bianchi surfaces) is obtained [15, 16}. Here, the negative Gaussian
curvature of the surfaces depends only on z. We shall see later that the Bicklund
transformation to be derived is in agreement with the one associated with surfaces of constant
negative curvature, i.e. the classical Bicklund transformation for the sine—Gordon equation.

3. The prolongation structure

For the derivation of a Bicklund transformation for the Maxwell-Bloch system it is now
necessary to set up 2 (linear) problem for the CC ideal (4), (5). To this end let us suppose
that the Lie algebra (1) is realized as vectorfields living on a manifold labelled by the
componenis of seme vector-valued variable y, say. In this case the comunutator appearing
in (2) is the usual Lie bracket (up to the sign) between vectorfields with respect to the
‘psendopotentials’ y, viz

[¥, Z)* = Y$ZF — 2%¥*
(Einstein's summation convention!}. Then, by construction, the set of one-forms
Q = ~dy + XJ£i + D’ns (12)

is closed, i.e. dQ = 0 mod &, iff the one-forms & and #; satisfy the (p, o') system. This
condition, in turn, guarantees that the equations §2 = ( are integrable [11, 12].
More specifically, in terms of the standard representation of the Lie algebra (1)

(X8 =ANXK:9,85)  (D")8e =—2"H15,
the set of one-forms (12) spiits into
9 = ~dp + M Xikd (13)

QV = —dr — A%, (14)

Here, the pseudopotential vector y consists of the components (¢!, ¢2, 1), (X;9, 9} denotes
the scalar product between those two-dimensional vectors and the matrices X; constitute
the standard faithful and tracefree representation of the $I(2, R) algebra as given by (3),

namely
1 0 0 0 01
X1=(0 _1) XF(_1 0) XF(O 0). as)

1 Note that tiroughout this paper greek indices label components of cbjects, whereas roman indices number the
objects themselves.
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Furthermore, restriction of £2 to an integral manifold

Qly=ye.y =0 ‘

and use of the explicit parametrization (6}, (7) produces the Frobenius system
A N  —p
%'5(~¢ _N)¢ (16)
1{ 0o EN rx1f1 0 '

¢"[5(—E* 0)+T(o —-1)]¢ an
together with

Ay = —5c33 A =0, (18)

The linear problem (16), (17) is non-isospectral, as pointed cut in [10], since the ‘parameter’
A depends on the coordinate x. In fact, the first-order system (18) can be integrated, giving

1
A= — 19
cvr+ K (19
where K is a real integration constant. It is evident that the integrability condition for the
Frobenius system (16)—(18) is satisfied modulo the Maxwell-Bloch system (8a).

4. The Backiund transformation

The following approach is based on the ‘dressing’ method developed by Neugebauer
and Kramer which provides Bicklund transformations for nonlinear equations given as
compatibility condition of (non-)isospectral Lax pairs of the form (16)—(18). This *N-
soliton ansatz” had its origin in the study of Emst’s equation of general relativity in 1979
"[17]. Subsequently, it has been applied to Einstein-Maxwell fields in general relativity and
the AKNS system [18, 19]. A generalization of this method to CC ideals has been discussed
in [9] the essence of which may be summarized as follows.

Theorem 1. Let a tracefree 2 x 2-matrix-valued one-form X (A) be polynomial of degree &
in a constant A and degree / in A~'. Furthermore, let ¢ be a two-dimensional pseudopotential
vector and

No
PRy =) P e R

n=0
be restricted by
)] det Py, = constant # 0 (20)
(i) P(A)g, =0 (1)
for arbitrary but distinct constants A,, r = 1,...,2N;, and lineariy independent

pseudopotential vectors ¢,.
Then the vector-valued one-form

§l=—-d¢+ X1 (22)
is form-invariant under

¢~ ¢ =Py (@23



552 W K Schief

G- Q=P (24)

X0 = X' = POOX)PI(R) +dPRYPTI() (25)

where the last relation has to be taken modulo R, = Qjp=g, 1=, -

In order not to clutter up the formulae with too many symbols we have confined
ourselves to the relevant case of two-dimensional objects. The condition (20) guarantees
that the new one-form X'()) is again tracefree whereas the condition (21) preserves the
polynomial structure and the degree of X’(A). Hence, X'(A,) is understood as limy—.;, X'(A).
It should be stressed that (21) constitutes a linear algebraic system which determines P())
up to one coefficient P,,, say.

Unfortunately, theorem 1 in the present form is not appropriate for the purposes pursued
in this paper since A is treated as a constant. Consequently, the above theorem provides
a Biicklund transformation only for CC ideals based on the loop algebra of si(2, R).
Nevertheless, the formal structure of the one-form QL (13) and (22) is the same though 2
therein is a pseudopotential itself. The following modification of theorem 1 takes this fact
into account.

Theorem 2. Let a wacefree 2 x 2-matrix-valued one-form X (A) be polynomial of degree k
in a pseudopotential A and degree  in A~*. Furthermore, let a one-form D(A) be polynomial
of degree k +2 in A and { in A™! and

ZND No
P = fWeW =Ta-2)723 0ut" €
r=l a=0
be restricted by
) det @y, = constant # 0 (26)
(J!) 2Argr =0 (27)

for arbitrary but distinct pseudopotentials A,, r = 1,...,2Ny, and linearly independent
pseudopotential vectors ¢,.
Then the vector-valued one-form

QF =—dp + X9
is form-invariant under
¢ — ¢' = P(R)¢
QF 5 QY = Po)RE (28)
X(3) = X'0) = PMXMPI (M) +dPMPTI(W)
whereas the one-form
QY = —dr — D)

remains unchanged. Analogous to theorem 1, (28) has to be taken modulo ©2£ and QY.
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Progf. To prove theorem 2 if is necessary to show two properties of the transformed one-
form X'(A). Firstly, since det @(A) is a polynomial of degree 2N in A and condition (27)
implies that det @(A,) = 0, we conclude that

2Ny

det Q(A) ~ H(A —Ap).

r=1
Thus, (26) yields
det P{)) = constant
and consequently
Tr X'(A) = Tr [AP(A) P~ (1)) = d[Indet P(A)] =
Secondly, it can readily be shown that the first two terms of the right-hand side of
df(d)
F &)

form a (Laurent) polynomial in A by following the proof of theorem 1 [9]. The remaining
term

X' =0MXMe ' W +doMQT W) + == (29)

df) _ dIPBG0 -2 138 DAY - DR
A Pae-a12 25 A—A

is regular at the zeros A, since D(1) is a (Laurent) peolynomial in A, Moreover, on writing
equation (28) in the form

df(n
XMem = 0MXM) +dQR) + % QM) (30)

it is easily proven that terms proportional to AY+**1 in (30) cancel out so that X'(A) is
indeed a polynomial in A of degree k and in 17" of degree /.

Now, the one-form Q% associated with the Maxwell-Bloch system can be characterized
uniquely via the properties of

X)) = X" = A"XE

ag given in (13)

X (%) is a polynomial of degree £ = 1 and [ = I, respectively (31)
X_; does not contain the generators X; and X3 (32)
X(=N) =MX*)M™! (33)

with

M= 0 -1 .
1 0
For the new one-form X’(A) condition (31) is covered by theorem 2. Invariance of the

remaining conditions (32) and (33) requires restrictions on Qg and the zeros A, according
to the following theorem.
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Theorem 3 (No-fold Bdcklund transformation for the Maxwell-Bloch cC ideal). The one-
form X"(A) = A]A" as given in theorem 2 satisfies (32) and (33) for

Np
Qo =[]21 (34
r=0
and
ANo.i.r:_lr r=1,...,ND
(35)
qu[ri'l‘ = M¢’r .
Evaluation of (30) leads to
Xf.] = A
Xy = QoA Q5" +121, X4)Q5" (36)

X = OnX O + 36 Qw105 -

The one-forms &2 are obtained by sorting with respect to the generators X;.

As was pointed out in {9, 19], discrete symmetries of the kind (33) are preserved by
a suitable choice of the zeros A,, ramely (35). Furthermore, the definition (34) of QO
guarantees that the primed version of (32) is satisfied. Thus, we can set

X =XiEY Xy=Xi&  Xl=X8

which establishes the Bécklund transformation for the (o, o) system (4), (5).

On use of the parametrization (6} and (7) the Béicklund transformation (Ng = 1) of the
Maxwell-Bloch system may be phrased as follows: Let E, g, N be a seed solution of the
Maxweli-Bloch system (8a2). Then a new solution of this system is given by

¥ =x =t
E'=E —2A;siny e o7
N’ '_p’ N -0 2
= R(y, R{y, MRy,
(_p*, _N,) r ﬁ)(__p,, _N) (v, BY + M R(y, B)
where
8

i Y
¢l2=ae" o =—tan > R(r,ﬁ)=(
and ¢, Ay is a solution of the Frobenius system (16)}-(18).

Finally, as mentioned at the end of section 2, the Maxwell-Bloch system in the form
(11) collapses to the sine~Gordon equation

cosy  sinye?
siny ef  —cosy

0,4 = siné (3%)
in the limit ¢ = 0, E real. In this case, y obeys the equations
Yo = M sin(y — ) Ve=6+AT"siny (39)

and the Bicklund transformation {37) reads
0 =—6+2y. - (40)



Biicklund transformations for the (un)pumped Maxwell-Bloch system 555

Solving (40) for y and inserting into (39) we rediscover the classical Backlund
transformation

9'-1-9) . (6"-—9) (6”—6) I 6'+8)
—— } = Apsin —— | =A['S
( 2 /s 2 2/ (

for the sine—Gordon equation (38) [20].

5. The fifth Painlevé equation

This section is devoted to a similarity reduction of the Maxwell-Bloch system. On using
suitable similarity variables this will lead to an ordinary differential equation of second
order which has been shown to be linked to the fifth Painlevé equation via a contact
transformation [10].

Following Winternitz [10], we first solve the Maxwell-Bloch system (8a) for o and N
so that we obtain a partial differential equation for E only, viz

EEy; — ExE + E°E, = Jc*E?. (41)
Here, E has been assumed to be real. Then it is easily seen that the above equation is
invariant under the Lie-point symmetry [21]

X =2x8; — 13, + Edg.

Consequently, equation (41) can be reduced io an ordinary differential equation by
introducing similarity variables according to

F .
E= % z=1t/x s=lnx.
Hence, we end up with the third order equation
(Z.FE) f.‘z_{ =c2. (42)
FJj. z

Remarkably, the first integral of this equation as given in [10] may be derived directly
from the linear problem (16)—{18). To this end we note that in the variables z and s the
coeificients of the Lax pair (16}, (17) are independent of s iff the integration constant in
(19) vanishes, i.e. A = 1/c./%. It then assumes the form

1 0 F cf1 O

wem (5 0o )l e
1 {2FF -F N\ 1f 0 F\ cfz 0

b= [4c( ~F. —zF},z/F) 4(_-F 'o) 4(0 ~z )]¢' @

This fact may now be exploited by setting

¢z, 5) = *13(2)
where ¢ is an arbitrary constant, which transforms (44) into the a]gebreuc System
—2F,/F +c%z cF+ F,
= . 45
eco ( CCF+F,  2Fu/F—c% ¢ (43)

Since (45) constituies an eigenvaiue problem, the corresponding determinant has to vanish
identically. Thus, the characteristic equation reads

2 (FufF =) + F2 = &PF = 2, 46)
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It can readily be verified that differentiation of {46} produces the third order equation (42)
provided that F,, /F — ¢? # 0. Finally, the contact transformation

Fz) = iw z =2\/E

H(H -1
#-D @
H(é’) — —lFFz"f‘ZF;;z é_ _lzz
T —iFF, + z(F,; — c%F) T4
connects (46) to the Painlevé equation
1 1 (H — 1) 1 c?
Hypm(— g V2 lpg oy 1Ny
L (2H+H—1)H ¢ : + 8{,’2 e H H 2% (48)
Its solution is the fifth Painlevé transcendent Py (3£%, —1, —1c?, 0; ¢). This observation is

in agreement with the strong link between the Painlevé property, i.e. the absence of movable
singularities other than poles, and integrable partial differential equations [1].

How does the Bicklund transformation (37) act on the Painlevé equation (48)? For this
we remark that the quotient of the two components of the eigenfunction ¢ is obtained from
{45) in a purely algebraic manner, namely

_9 F, +cF

T ¢ z(F/F —cD) tec’
Furthermore, the corresponding ‘spatial’ part (43) is satisfied modulo (46). Hence, the
(Bicklund) transformation for £ is given by

, F2 — ¢*F?
Fl=F-de i 49)

In order to get the transformation law for the constant £ we insert F”' into the primed version
of (46) and conclude that

e =ec+2. (50)

The final step in the procedure is to apply the contact transformation (47) to the
transformation (49) which yields

(QrH; +1— H?? — 4r HY(H — 1) — H*(H — 1)%(e + 1)2
HIQIH; +e(H - 1P —2(H—-1))? —4¢H(H - 1) = (H - 1)} + 1)2]

H = 51
(thanks to MAPLE’s factorizer). Here, ¢ = 1 has been set without loss of generality,

The transformation properties of the six Painlevé equations have been widely studied
by Russian authors. A unified approach and references can be found in [22). Gromak [23]
has given a transformation between the fifth and the third Painlevé equation which we
denote by Ty . Moreover, if Pp(w, B, ¥.8;z) is a solution of the third Painlevé
equation so is —Py{—¢, — 3, ¥, 8; 2) (transformation Tiy). The composite transformation
Tm—v o Tmy © Ty_.n then agrees with the one derived in this paper.

To round off we illustrate the fact that the transformation (49) (or (51)) may be iterated
and therefore produces chains of solutions by way of an example. On starting with the seed
solution
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we generate the following hierarchy of rational solutions:

Ffl=2z -
z(3—2%)
F=="
T4
o 2(z8 — 9z% — 4572 4-45)
ST T35 272+ 9
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